National Aeronautics and Space Administration

Characterizing Near-surface 5 Fractures in Radar Interferograms

Jay Parker, Andrea Donnellan, Margaret Glasscoe

Jet Propulsion Laboratory/California Institute of Technology

With thanks to NASA programs:

Advanced Information Systems Technologies, Earth Surface and Interior Applications of Geodetic Imaging, Decision Support Through Earth Science Research Results

- UAV Synthetic Aperture Radar (Repeat Visits)
- Importance of characterizing secondary faulting
- Gain and risk from multiple views
- Pseudomechanism, wide composite views
 - Napa, SAF
- Automatic scanning for
 - mechanism, shear width, total slip

UAVSAR Pod On Gulfstream III

Gulfstream 3 semi-piloted aircraft

- Radar for studying earth processes
- Repeat visit→ landscape change image
- High-definition: 7 m pixel size:
- >120 Megapixel images
- Sensitive: sees <1 cm surface fault slip

One day on Global Hawk or other drone?

Rare: repeat pass ~ 5 m enables interferometry)

UAVSAR looks to the side about 20 to 70 degrees $\Phi_{
ho h}$

- Repeat Pass Interferometry:
- Surface deformation, mapped into
- Elevation Φ_{eh} azimuth θ_{Az} (Line-Of-Sight)

 $S_{Proj} = S \cos(\Phi_{el}) \cos(\theta_{Az} - \theta_{Strike})$

Slip vs LOS slip

- Slip vs. Line Of Sight (LOS) projected slip
- For true strike slip D = 100mm, reduce by $D_{LOS} = D \cos(a s) \cos(e)$,
- Example: a s = 45, $e = 45 => D_{LOS} = 50$ mm

e = elevation from horizontal to sensor

a = azimuth from ground point to sensor (clockwise from north)

L = line of sight motion of ground point to sensor

s = strike (clockwise from north)

 $\delta = dip$

r = rake

D = displacement

PseudoMechanism

- Radar sees rupture as a value jump across a line
- One side moves closer, one side farther
- Gradient G direction shows which moved closer
- Sign of G x L:
 - + white pseudo left lateral (pLL)
 - black pseudo right lateral (pRL)
 - (but could have vertical part)

- e = elevation from horizontal to sensor
- a = azimuth from ground point to sensor (clockwise from north)
- L = line of sight motion of ground point to sensor

s = strike (clockwise from north)

 $\delta = dip$

r = rake

D = displacement

Border CA-MX visits Oct 2009 : Sep 2010

EMC occurred April 4 2010

South Napa Earthquake, line 05512

Evaluation of slip, Napa sample

- Gradient across fault
- Simulated (Okada elastic half-space)
- Varying fault top (locked above this), 0-500m for dx = 200m
- Sum across width -> consistent total slip

 Width: how? Currently by slope ratio threshold (left)

Two views: what can we learn?

- Two views: separation of vertical slip from horizontal.
- Vector analysis yields clean separation of one vertical and one horizontal slip component. (bottom row, from Donnellan et al, 2015).
- H ~ Z x B, V~ BxH. Express L1, L2 in this basis: L1h, L1v etc. Deformation jump components are then
- dD1= Sh L1h + Sv L1v =→ solve for horizontal, vertical slip components Sh, Sv.
- dD2= Sh L2h + Sv L2v (automation in progress).
- La Habra earthquake M5.1 3/28/2014 damage area:

South Napa Earthquake, Composite

South Napa, wider view

SAF triggered by EMC:

from south

San Andreas Fault triggered by EMC from north

Detail: Painted Canyon, Mecca Hills

SAF triggered by EMC, composite, 5 strips

Next Steps, Conclusions

Next Steps

- Automate total displacement, shear width
- Extend to wrapped interferograms
- Demonstrate using satellite InSAR

Conclusions

- Detecting edge pixels allows large reduction in further analysis (typically 1m total to 5k points of interest)
- Maps of pLL, pRL show patterns of tectonic development
- Composite maps of pLL, pRL with several strips make large approximations but show helpful big picture